Self-healing materials with microvascular networks.
نویسندگان
چکیده
Self-healing polymers composed of microencapsulated healing agents exhibit remarkable mechanical performance and regenerative ability, but are limited to autonomic repair of a single damage event in a given location. Self-healing is triggered by crack-induced rupture of the embedded capsules; thus, once a localized region is depleted of healing agent, further repair is precluded. Re-mendable polymers can achieve multiple healing cycles, but require external intervention in the form of heat treatment and applied pressure. Here, we report a self-healing system capable of autonomously repairing repeated damage events. Our bio-inspired coating-substrate design delivers healing agent to cracks in a polymer coating via a three-dimensional microvascular network embedded in the substrate. Crack damage in the epoxy coating is healed repeatedly. This approach opens new avenues for continuous delivery of healing agents for self-repair as well as other active species for additional functionality.
منابع مشابه
Characterization of Microvascular-Based Self-healing Coatings
A protocol is described to assess self-healing of crack damage in a polymer coating deposited on a substrate containing a microvascular network. The bio-inspired coating/substrate design delivers healing agent to cracks in the coating via a three-dimensional microvascular network embedded in the substrate. Through capillary action, monomer flows from the network channels into the crack plane wh...
متن کاملAccelerated SelfHealing Via Ternary Interpenetrating Microvascular Networks
Self-healing materials with dual interpenetrating microvascular networks enable two-part healing chemistries and repeated healing of damage in a localized region. [ 1 ] However, due to slow healing kinetics, multiple days are required between damage events to recover mechanical performance under ambient conditions. By directly writing a third interdigitated microvascular network within these ep...
متن کاملRobust Self-Healing Hydrogels Assisted by Cross-Linked Nanofiber Networks
Given increasing environmental and energy issues, mimicking nature to confer synthetic materials with self-healing property to expand their lifespan is highly desirable. Just like human skin recovers itself upon damage with the aid of nutrient-laden blood vascularization, designing smart materials with microvascular network to accelerate self-healing is workable but continues to be a challenge....
متن کاملDelivery of Two-Part Self-Healing Chemistry via Microvascular Networks
Multiple healing cycles of a single crack in a brittle polymer coating are achieved by microvascular delivery of a two-part, epoxy-based self-healing chemistry. Epoxy resin and amine-based curing agents are transported to the crack plane through two sets of independent vascular networks embedded within a ductile polymer substrate beneath the coating. The two reactive components remain isolated ...
متن کاملNovel Encapsulation Technologies for Small Size-scale Self-healing Applications by Aaron
Self-healing technology offers an autonomic route to repairing damage in advanced polymers to extend their lifetime. A variety of self-healing systems have been developed for mechanical self-healing, protective coatings, and electronic self-healing. These self-healing systems rely on functional groups within the polymer, microvascular networks, or compartmentalization in capsules and particles....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature materials
دوره 6 8 شماره
صفحات -
تاریخ انتشار 2007